If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-63y=0
a = 7; b = -63; c = 0;
Δ = b2-4ac
Δ = -632-4·7·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-63}{2*7}=\frac{0}{14} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+63}{2*7}=\frac{126}{14} =9 $
| x+-1=-10 | | x+-1=-1`0 | | -58=5n+2 | | -(a-3)=3 | | -7=4x+2x=x | | 8=4n-24 | | -5(3x-27)=2(x-15)-5 | | 10t-7=12 | | 61-15x=1-20x+38 | | -7a-2=51 | | 2x+5+3x+7=8x-15 | | 3k+5=23= | | -61-15x=1-29x+38 | | (3y+1)=67 | | 8c-6=3c+9+2c | | 2x+5+3x+7+8x-15=180 | | 0.5(x-4)=16+5x | | c+100-24=14 | | (h)/(3)+(h)/(6)=1 | | 6=2(-7+n) | | 7(g-72)=98 | | 8g+11=3g-19 | | (5z-8)=97 | | 20n+45=7 | | 40x-30=40+30 | | 3(-4-2x)=48 | | 2(n+12)=34 | | 83+y=180 | | 3c+5=23= | | 10(z-82)=100 | | 2((x+4)/3)=12 | | 31+3x=3(-x+5)-20 |